Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Seminar on Analysis, Differential Equations and Mathematical Physics
27 июня 2024 г. 18:00–19:00, г. Ростов-на-Дону, online
 


Instability theory of stationary kink and anti-kink profiles for the sine-Gordon equation on a Y-junction graph

R. Plaza

National Autonomous University of Mexico

Количество просмотров:
Эта страница:80

Аннотация: The purpose of this talk is to communicate recent results regarding the (in)stability theory of static solutions of kink and anti-kink type for the sine-Gordon equation posed on a Y-junction graph. The boundary conditions at the vertex are assumed to be of delta- or delta'-type. Applications of the model include the study of tri-crystal boundaries of Josephson junctions in superconductivity theory. It is shown that kink and kink/anti-kink soliton type stationary profiles are linearly (and nonlinearly) unstable. A linear instability criterion that provides the sufficient conditions on the linearized operator around the wave to have a pair of real positive/negative eigenvalues, is established. The linear stability analysis depends upon the spectral study of this linear operator and of its Morse index. The extension theory of symmetric operators, Sturm-Liouville oscillation results and analytic perturbation theory of operators are fundamental ingredients in the stability analysis. This is joint work with J. Angulo Pava (Univ. of Sao Paulo).

Язык доклада: английский

Website: https://msrn.tilda.ws/sl
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024