Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Международная конференция по математической и теоретической физике, посвященная 90-летию со дня рождения Л.Д. Фаддеева
30 мая 2024 г. 16:30–17:30, г. Санкт-Петербург, Санкт-Петербургское отделение Математического института им. В. А. Стеклова РАН
 


Wronski map and positive Grassmannians

V. O. Tarasov

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences

Количество просмотров:
Эта страница:79
Youtube:



Аннотация: The B. and M.Shapiro conjecture states that if the Wronskian of polynomials with complex coefficients have only real roots, then the span of those polynomials has a basis given by polynomials with real coefficients. The conjecture has several important reformulations in real algebraic geometry. The conjecture was proved (also for quasi-exponentials, products of polynomials and exponentials of linear functions) by E.Mukhin, A.Varchenko and myself using the completeness of the Bethe ansatz for the $\mathfrak{gl}_N$ Gaudin model and the symmetry of the Gaudin Hamiltonians with respect to the tensor Shapovalov form.
Recently, S.Karp and K.Purbhoo showed that the span of polynomials in question belongs to the totally positive part of the Grassmannian define by the Taylor expansion at a real point greater than all roots of the Wronskian. In a joint work with S.Karp and E.Mukhin we extended this statement to quasi-exponentials and showed that this positivity statement corresponds to the positivity of higher transfer-matrices of Gaudin model corresponding to polynomial irreducible representations of $\mathfrak{gl}_N$ introduced by A.Alexandrov, S.Leurent, Z.Tsuboi, and A.Zabrodin.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024