Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Friends in Partial Differential Equations
25 мая 2024 г. 14:30–14:50, St. Petersburg, St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, online
 


Mathematical scattering theory in electromagnetic waveguides

A. S. Poretskii

Saint Petersburg State University
Видеозаписи:
MP4 45.1 Mb

Количество просмотров:
Эта страница:92
Видеофайлы:7



Аннотация: Waveguide occupies a 3D domain $G$ having several cylindrical outlets to infinity and is described by the non-stationary Maxwell system with conductive boundary conditions. Dielectric permittivity and magnetic permeability are assumed to be positive definite matrices $\varepsilon(x)$ and $\mu(x)$ depending on a point $x$ in $G$. At infinity, in each cylindrical outlet, the matrix-valued functions converge with an exponential rate to matrix-valued functions that do not depend on the axial coordinate of the cylinder.
For the corresponding stationary problem with spectral parameter we define continuous spectrum eigenfunctions and the scattering matrix. The non-stationary Maxwell system is extended up to an equation of the form $i\partial_t \mathcal{U}(x,t)=\mathcal{A}(x,D_x)\mathcal{U}(x,t)$ with an elliptic operator $\mathcal{A}(x,D_x)$. We associate with the equation a boundary value problem and, for an appropriate couple of such problems, construct the scattering theory. We calculate the wave operators, define the scattering operator and describe its relation to the scattering matrix. From the obtained results we extract information about the original Maxwell system.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024