Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Friends in Partial Differential Equations
25 мая 2024 г. 11:30–12:10, St. Petersburg, St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, online
 


Payne nodal set conjecture for the fractional p-Laplacian in Steiner symmetric domains

V. Bobkov

Institute of Mathematics with Computing Centre, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa
Видеозаписи:
MP4 90.9 Mb

Количество просмотров:
Эта страница:90
Видеофайлы:8



Аннотация: Let $u$ be either a second eigenfunction of the fractional $p$-Laplacian or a least energy nodal solution of the equation $(-\Delta)^s_p u = f(u)$ with superhomogeneous and subcritical nonlinearity $f$, in a bounded open set $\Omega$ and under the nonlocal zero Dirichlet conditions. Assuming that $\Omega$ is Steiner symmetric, we show that the supports of positive and negative parts of $u$ intersect $\partial\Omega$, and, consequently, the nodal set of $u$ has the same property.
The proof involves the analysis of certain polarization inequalities related to positive and negative parts of $u$, and alternative characterizations of second eigenfunctions and least energy nodal solutions.
The talk is based on a joint work with S. Kolonitskii.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024