Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Совместный общематематический семинар СПбГУ и Пекинского Университета
25 апреля 2024 г. 16:00–17:00, г. Санкт-Петербург, online
 


Bohr chaoticity and Khintchin conjecture

Aihua Fan

University of Picardie Jules Verne

Количество просмотров:
Эта страница:100

Аннотация: The Sarnak conjecture, which concerns with the Birkhoff averages weighted by the Möbius sequence, asserts that all zero entropy systems are orthogonal to the Möbius sequence. Which systems are orthogonal to none of non-trivial weights? We define such systems as Bohr chaotic systems. The Bohr chaoticity is a complexity of the system and is a topological invariant; it implies the positivity of entropy. However, the positivity of entropy doesn’t imply the Bohr chaoticity. We prove that a system $(X, T)$ admitting a horseshoe (i.e a susbsytem of some power of $T$ is conjugate to a full shift) is Bohr chaotic. Thus the usual nice systems of positive entropy are Bohr chaotic. But systems having few ergodic measures are not Bohr chaotic. Another class of systems which are proved to be Bohr chaotic are the algebraic principal systems. These are joint works with Shilei FAN (Wuhan), Valery RYZHYKOV (Moscou), Klaus SCHMIDT (Vienna), Weixiao SHEN (Shanghai) and Evgeny VERBITSKIY (Leiden). Also I would like to talk about Khintchin’s conjecture, a related problem in a setting of actions of mutiplicative semigroups of integers (more generally, actions of surjective endomorphisms of a compact Abelian group). But there is more questions than results for this topic.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024