Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар ВШЭ «Гомологические и гомотопические методы в геометрии, теории представлений и математической физике»
21 декабря 2011 г. 18:30, г. Москва, ауд. 311 матфака НИУ ВШЭ (ул. Вавилова, д. 7, третий этаж)
 


On $G$-Hilb $C^n$

Timothy Logvinenko

University of Warwick

Количество просмотров:
Эта страница:168

Аннотация: Let $G$ be a finite subgroup of $SL_n(C)$. The scheme $G$-Hilb $C^n$ is the fine moduli space of $G$-clusters, the scheme-theoretic orbits of $G$ in $C^n$. It can also be thought of as a union of some of the connected components of the $G$-invariant part of the Hilbert scheme of $|G|$-tuple of points on $C^n$. When $n=2$ or $3$ it is a crepant resolution of the quotient singularity $C^n/G$. In this talk I give an overview of some of the cases where we have a fairly explicit understanding of $G$-Hilb $C^n$ and its geometry.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024