Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Когомологические аспекты геометрии дифференциальных уравнений
17 апреля 2024 г. 19:20, г. Москва, онлайн, ссылку для участия можно получить по почте seminar@gdeq.org
 


A construction of solutions of an integrable deformation of a commutative Lie algebra of skew Hermitian $\mathbb{Z}\times\mathbb{Z}$-matrices

G. F. Helminck
Видеозаписи:
MP4 141.8 Mb

Количество просмотров:
Эта страница:106
Видеофайлы:17

G. F. Helminck



Аннотация: Inside the algebra $LT_{\mathbb{Z}}(R)$ of $\mathbb{Z} \times \mathbb{Z}$-matrices with coefficients from a commutative $\mathbb{C}$-algebra $R$ that have only a finite number of nonzero diagonals above the central diagonal, we consider a deformation of a commutative Lie algebra $\mathcal{C}_{sh}(\mathbb{C})$ of finite band skew Hermitian matrices that is different from the Lie subalgebras that were deformed at the discrete KP hierarchy and its strict version.The evolution equations that the deformed generators of $\mathcal{C}_{sh}(\mathbb{C})$ have to satisfy are determined by the decomposition of $LT_{\mathbb{Z}}(R)$ in the direct sum of an algebra of lower triangular matrices and the finite band skew Hermitian matrices. This yields then the $\mathcal{C}_{sh}(\mathbb{C})$-hierarchy. We show that the projections of a solution satisfy zero curvature relations and that it suffices to solve an associated Cauchy problem. Solutions of this type can be obtained by finding appropriate vectors in the $LT_{\mathbb{Z}}(R)$-module of oscillating matrices, the so-called wave matrices, that satisfy a set of equations in the oscillating matrices, called the linearization of the $\mathcal{C}_{sh}(\mathbb{C})$-hierarchy. Finally, a Hilbert Lie group will be introduced from which wave matrices for the $\mathcal{C}_{sh}(\mathbb{C})$-hierarchy are constructed.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024