Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Beijing–Moscow Mathematics Colloquium
15 марта 2024 г. 12:00–13:00, г. Москва, online
 


Element orders and the structure of a finite group

M. A. Grechkoseeva

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Количество просмотров:
Эта страница:113

Аннотация: To every finite group $G$, we can assign the set $\omega(G)$ consisting of all positive integers arising as element orders of $G$ (so, for example, $\omega(A_5)=\{1,2,3,5\}$). It is a natural question to ask what we can say about the structure of $G$ given some properties of $\omega(G)$. Within this framework, I will discuss a more narrow question of to what extent $\omega(G)$ determines $G$ provided that $G$ is a finite nonabelian simple group.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024