Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Научный семинар по дифференциальным и функционально-дифференциальным уравнениям
27 февраля 2024 г. 12:00, г. Москва, ул. Орджоникидзе, 3, ауд. 458
 


О восстановлении решения задачи Коши для сингулярного уравнения теплопроводности по неполным неточным измерениям

И. П. Половинкинab, М. В. Половинкинаc

a Белгородский государственный национальный исследовательский университет
b Воронежский государственный университет
c Воронежский государственный университет инженерных технологий

Количество просмотров:
Эта страница:136
Youtube:



Аннотация: В 2009г. Г.Г. Магарил-Ильяев и К.Ю. Осипенко поставили и решили следующую задачу. Пусть в некоторые моменты времени известны температурные распределения в виде функций пространственных переменных, заданные приближенно. Для каждого набора таких функций требуется найти функцию, которая наилучшим в некотором смысле образом аппроксимирует реальное распределение температуры в заданный фиксированный момент времени. Мы исследуем аналогичную задачу для уравнения сингулярного теплового типа с оператором Бесселя. Сингулярности указанного типа возникают в моделях математической физики в таких случаях, когда характеристики сред (например, характеристики диффузии или характеристики теплопроводности) имеют вырожденные степенные неоднородности. Кроме того, к таким уравнениям приводят ситуации, когда исследуются изотропные диффузионные процессы с осевой или сферической симметрией. Полученные нами результаты согласуются с результатами Г.Г. Магарил-Ильяева и К.Ю. Осипенко и отражают особенности постановки задачи.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024