|
|
Семинар отдела механики
19 февраля 2024 г. 12:00, г. Москва, МИАН, комн. 530 (ул. Губкина, 8)
|
|
|
|
|
|
Геометрическая теория дефектов
М. О. Катанаев Математический институт им. В.А. Стеклова Российской академии наук, г. Москва
|
Количество просмотров: |
Эта страница: | 127 |
|
Аннотация:
Предложена модель, описывающая дефекты в упругой среде - дислокации и дисклинации - в рамках геометрии Римана-Картана. Кривизна и кручение интерпретируются как поверхностные плотности векторов Бюргерса и Франка, соответственно. Предложено новое выражение для свободной энергии, которое приводит к уравнениям равновесия для статического распределения дефектов. Уравнения нелинейной теории упругости используются для фиксирования системы координат. Лоренцева калибровка для SO(3)-связности приводит к уравнениям главного кирального SO(3)-поля для спиновой
структуры. Пример клиновой дислокации показывает, что теория упругости воспроизводит только линейное приближение геометрической теории дефектов. Геометрическая теория дефектов с одинаковым успехом описывает как отдельные дефекты, так и их непрерывное распределение.
|
|