|
|
Семинар отдела алгебры
6 декабря 2011 г. 15:00, г. Москва, МИАН, комн. 540 (ул. Губкина, 8)
|
|
|
|
|
|
Характер Черна для матричных факторизаций
А. И. Ефимов |
Количество просмотров: |
Эта страница: | 492 |
|
Аннотация:
Мы покажем, что для любого гладкого квазипроективного комплексного алгебраического многообразия $X$ с регулярной функцией $W$ периодические циклические гомологии категории матричных факторизаций $MF(X,W)$ (как $\mathbb{Z}/2$-градуированное расслоение со связностью на формальном проколотом диске) отождествляются (при соответствии Римана–Гильберта)
с когомологиями комплексно-аналитического многообразия $X^{an}$ с коэффициентами в пучке исчезающих циклов $\phi_W\mathbb{C}_X$ с естественной монодромией.
В частности, это дает характер Черна $ch$ из группы Гротендика $K_0(MF(X,W)^c)$ (где $^c$ обозначает карубиеву оболочку) в инварианты относительно монодромии в $H^{even}(X_{an},\phi_W\mathbb{C}_X)$. Ожидается, что его образ определен над $\mathbb{Q}$, причем содержится в рациональных ходжевых классах. Если это верно, то возникает аналог гипотезы Ходжа: образ $ch\otimes\mathbb{Q}$ совпадает с пространством рациональных ходжевых классов (инвариантных относительно монодромии).
|
|