Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Beijing–Moscow Mathematics Colloquium
1 декабря 2023 г. 12:00–13:00, г. Москва, online
 


Equivariant completions of affine space

I. Arzhantsev

HSE University, Moscow

Количество просмотров:
Эта страница:101

Аннотация: In this talk we survey recent results on open embeddings of the complex affine space $\mathbb{A}^n$ into a complete algebraic variety $X$ such that the action of the vector group $G$ on $\mathbb{A}^n$ by translations extends to an action of $G$ on $X$. We begin with Hassett-Tschinkel correspondence describing equivariant embeddings of $\mathbb{A}^n$ into projective spaces and give its generalization for embeddings into projective hypersurfaces. We prove that non-degenerate projective hypersurfaces admitting such an embedding are in bijection with Gorenstein local algebras. Moreover, such an embedding into a projective hypersurface is unique if and only if the hypersurface is non-degenerate.Further we deal with embeddings into flag varieties and their degenerations, complete toric varieties, and Fano varieties of certain types. Supported by the Russian Science Foundation grant 23-21-00472

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024