Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Современные проблемы теории чисел
7 декабря 2023 г. 12:45, г. Москва, ZOOM
 


Covering shrinking polynomials by quasi progressions

Norbert Hegyvari

Eötvös University, Institute of Mathematics
Видеозаписи:
MP4 506.5 Mb
MP4 357.6 Mb

Количество просмотров:
Эта страница:158
Видеофайлы:24



Аннотация: Erdős introduced the quantity $S=T\sum^T_{i=1}|X_i|$, where $X_1,\dots, X_T$ are arithmetic progressions that cover the squares up to $N$. He conjectured that $S$ is close to $N$, i.e. the square numbers cannot be covered "economically" by arithmetic progressions. Sárközy confirmed this conjecture and proved that $S\geq cN/\log^2N$. In this paper we extend this to shrinking polynomials and so-called $\{X_i\}$ quasi progressions.
Passcode: a six digit number $N=(4!)^2+(p-5)^2$ where $p$ is the smallest prime such that $p>600.$

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024