Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Конструктивные методы теории римановых поверхностей и приложения
13 ноября 2023 г. 17:30–18:15, г.о. Сириус, Университет Сириус
 


Explicit formulas for differentiation of hyperelliptic functions, multidimensional sigma functions and applications

E. Yu. Bunkova

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Видеозаписи:
MP4 70.3 Mb

Количество просмотров:
Эта страница:162
Видеофайлы:33



Аннотация: In the 1882 paper by F. G. Frobenius and L. Stickelberger [1], the problems of differentiation of elliptic functions over parameters of elliptic curves and over periods of elliptic functions were solved. In the talk we will consider a modern multidimensional generalization of these problems and present their explicit solutions.
Our approach is based on methods from [2] and our results in the theory of multidimensional sigma functions defined for families of hyperelliptic curves. Using these results, we determine such sigma functions as solutions of explicitly defined systems of equations. The sigma functions are used to construct the field of hyperelliptic functions, the multidimensional generalization of the field of elliptic functions. Hyperelliptic functions are multidimensional meromorphic functions with sets of periods determined by hyperelliptic curves.
The 1974 paper by S. P. Novikov [3] formed the basis for the development of widely known algebraic-geometric methods in soliton theory and mathematical physics. The methods allow to obtain solutions of fundamental dynamical systems in terms of multidimensional meromorphic functions with sets of periods determined by algebraic curves. We will show applications of our results to such solutions.
Our main results are presented in [4].

Язык доклада: английский

Список литературы
  1. F. G. Frobenius, L. Stickelberger, “Uber die Differentiation der elliptischen Functionen nach den Perioden und Invarianten”, J. Reine Angew. Math., 92 (1882), 311–337
  2. V. M. Buchstaber, D. V. Leikin, “Solution of the Problem of Differentiation of Abelian Functions over Parameters for Families of $(n,s)$-Curves”, Funct. Anal. Appl., 42:4 (2008), 268–278
  3. S. P. Novikov, “The periodic problem for the Korteweg–de Vries equation”, Funct. Anal. Appl., 8:3 (1974), 236–246
  4. E. Yu. Bunkova, V. M. Buchstaber, “Explicit formulas for differentiation of hyperelliptic functions”, Matematicheskie Zametki, 114:6 (2023), 808–821
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024