Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар теоргруппы ЛФВЭ МФТИ
21 ноября 2023 г. 15:00–17:00, г. Долгопрудный, МФТИ, Лабораторный корпус, комната 403
 


Магические углы скрученного трехлистного графена

Попов Федор Калинович

Нью-Йоркский университет, Общество стипендиатов Саймонса

Количество просмотров:
Эта страница:108

Аннотация: Мы рассматриваем конфигурацию из трех уложенных друг на друга монослоев графена с одинаковыми последовательными углами закручивания θ. Примечательно, что в киральном пределе, когда пренебрегают условиями межслоевой связи между участками АА муарового рисунка, мы обнаруживаем четыре идеально плоские полосы (для каждой долины) при последовательности магических углов, которые в точности равны магическим углам скрученного двухслойного графена (ТБГ). разделить на 2–√. Следовательно, первый магический угол для трехслойного графена равного скручивания (eTTG) в киральном пределе составляет θ∗≈1,05∘/2–√≈0,74∘. Мы доказываем это соотношение аналитически и показываем, что блоховские состояния плоских зон eTTG нелинейно связаны с состояниями TBG. Кроме того, мы показываем, что под магическими углами верхняя и нижняя зоны должны касаться четырех точно плоских зон в точке Дирака среднего слоя графена. Наконец, мы исследуем спектр eTTG за пределами кирального предела посредством численного анализа.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024