Аннотация:
Теория волновой турбулентности интенсивно развивается в физических работах с 1960-х, но, несмотря на значительный интерес в сообществе, продвижение в ее математическом обосновании наметилось лишь в последние несколько лет. Мы рассмотрели случайное возмущение слабо нелинейного уравнения Шредингера на торе и его квазирешение, решающее уравнение с малой невязкой. Мы исследовали предел «нелинейность и случайное возмущение к нулю, а затем период тора к бесконечности» квазирешения. Мы доказали, что его основная физическая характеристика, называемая «энергетическим спектром» и заданная $L_2$-нормой по вероятности его коэффициентов Фурье, приближенно удовлетворяет волновому кинетическому уравнению. Это завершает первый шаг в строгом обосновании основной гипотезы теории волновой турбулентности для рассматриваемой модели. Второй шаг состоит в доказательстве близости квазирешения к точному решению.