Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинары отдела математической логики "Теория доказательств" и "Logic Online Seminar"
27 ноября 2023 г. 14:00, г. Москва, Zoom
 


On finitely presented expansions of semigroups, groups, and algebras

B. Khoussainov

Computer Science School, The UESTC, China
Видеозаписи:
MP4 663.5 Mb
MP4 1,201.9 Mb
Дополнительные материалы:
Adobe PDF 169.8 Kb

Количество просмотров:
Эта страница:146
Видеофайлы:14
Материалы:4



Аннотация: Finitely presented algebraic systems, e.g., groups, are fundamental in algebra and computation. They have computably enumerable word equality problems and are finitely generated (f.g.). We refer to f.g. algebraic systems with computably enumerable word equality problems as computably enumerable. Not all computably enumerable, f.g. algebraic systems are finitely presented. This talk explores the quest for finitely presented expansions of computably enumerable, f.g. algebraic systems. The expansion of algebraic systems, such as transforming groups into rings or introducing automorphisms, is an important technique in algebra, model theory, and theoretical computer science. Bergstra and Tucker proved that all computably enumerable algebraic systems with decidable word problems have finitely presented expansions. They, along with Goncharov, independently asked if every f.g. computably enumerable algebraic system has a finitely presented expansion. In this talk, we provide examples of f.g. computably enumerable semigroups, groups, and algebras that lack finitely presented expansions, thus answering the question of Bergstra-Tucker and Goncharov. Additionally, we construct examples of residually finite, infinite, and algorithmically finite group, answering Miasnikov and Osin’s question. These constructions rely on the interplay between key concepts from computability (e.g., simple and immune sets) and algebra (e.g., residual finiteness and the Golod-Shafaverevich theorem). This work is joint with A. Miasnikov.

Дополнительные материалы: moskow.pdf (169.8 Kb)

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024