Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар «Алгебры в анализе»
27 октября 2023 г. 18:00–19:30, г. Москва, доклад состоится на платформе Zoom, ссылка предоставляется по запросу
 


Algebras of free $C^\infty$-functions

О. Ю. Аристов

Количество просмотров:
Эта страница:89
Youtube:



Аннотация: The algebra of $C^\infty$ real functions on a manifold is a quotient of $C^\infty(\mathbb{R}^k)$ for some $k$. One of the options for including spaces with singularities in the game is to consider arbitrary quotients ($C^\infty$-differentiable algebras). It follows from classical results that $C^\infty(\mathbb{R}^k)$ is a free algebra in the category of commutative real Arens-Michael algebras that have polynomial growth locally (PGL algebras). Our main goal is to describe non-commutative analogues — algebras of free $C^\infty$-functions, which are defined as PGL envelopes of free algebras of non-commutative polynomials. In the case of finitely many generators, this description provides us some information on quotients of algebras free $C^\infty$-functions, which we call `finitely $C^\infty$-generated algebras’. This notion is not only a non-commutative version of the concept of $C^\infty$-differentiable algebra but also a $C^\infty$ analogue of the concept of holomorphically finitely generated algebra introduced by Pirkovskii. One of the reasons for the interest in finitely $C^\infty$-generated algebras is their good behaviour with respect to the projective tensor product, which makes it possible to study topological Hopf algebras with underlying algebras in this class.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024