Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Санкт-Петербургский семинар по теории операторов и теории функций
30 октября 2023 г. 17:30–19:00, г. Санкт-Петербург, Фонтанка, 27, ауд. 311, также трансляция на платформе zoom, пароль можно узнать у Д. Столярова http://www.mathnet.ru/php/person.phtml?option_lang=rus&personid=61744
 


Функция Б.Я.Левина для некоторых совокупностей промежутков

Н. А. Широков

Количество просмотров:
Эта страница:96

Аннотация: Пусть $E$ – некоторая совокупность попарно дизъюнктных отрезков вещественной оси, уходящих к плюс и минус бесконечности. Функцией Б.Я.Левина для множества $E$ мы называем субгармоническую на всей комплексной плоскости функцию $f(z)$, удовлетворяющую следующим условиям:
1. $f(z)=0$, если $z\in E$, $f(\overline z)=f(z)$.
2. $\limsup_{z\to\infty}\frac{f(z)}{|z|}=c$, $c>0$.
3. если $u(z)$ – субгармоническая на всей плоскости функция, такая, что $u(z)\leq 0$, если $z\in E$, и $\limsup_{z\to\infty}\frac{u(z)}{|z|}\leq c$, то $u(z)\leq f(z)$, $z \in E$.
Мы строим некоторые совокупности промежутков, длины которых степенным образом стремятся к нулю на бесконечности, и выясняем поведение соответствующих функций Б.Я.Левина на плоскости.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024