Аннотация:
Рассмотрены косые произведения на простейших многообразиях произвольной конечной размерности. Доказана фундаментальная теорема о разложении пространства $C^1$-гладких косых произведений в конечное объединение подпространств, которая излагается для случая косых произведений с двумерным фазовым пространством.
Наиболее изученным в настоящее время является одно из подпространств (в некотором естественном смысле, наиболее простое), содержащее открытое (но не всюду плотное в нем) подмножество $C^1$-гладких Омега-устойчивых косых произведений. Рассмотрены аппроксимационные свойства такого рода отображений.
Показано, как естественно в рамках изучения косых произведений возникает один из возможных подходов к понятию интегрируемости дискретной динамической системы. Приведены критерии интегрируемости дискретной динамической системы. Сформулированы нерешенные проблемы.