Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Общегородской семинар по математической физике им. В. И. Смирнова
16 октября 2023 г. 16:30, г. Санкт-Петербург, онлайн-конференция zoom
 


Existence of planar H-loops via Hardy's inequality

R. Musina

University of Udine
Дополнительные материалы:
Adobe PDF 71.3 Kb

Аннотация: Given a continuous function on $\mathbb{R}^2$, we study the existence of non-constant, $2\pi$-periodic solutions to the $2$-dimensional Hamiltonian system
\begin{equation} \label{eq:problem} u''=|u'|~\!{\rm H}(u) iu'. \end{equation}
Any non-constant solution to \eqref{eq:problem} parametrizes a closed planar curve having prescribed curvature ${\rm H}$ at each point. Our interest in \eqref{eq:problem} is motivated also by its relations with Arnold's problem on ${\rm H}$-magnetic geodesics.
Problem \eqref{eq:problem} admits a variational formulation; under reasonable assumptions on the prescribed (non-constant) curvature ${\rm H}$, the associated energy functional has a nice Mountain-Pass geometry. However, due to the groups of dilations and translations in $\mathbb{R}^2$, the Palais-Smale condition fails to hold, and in fact there could exists unbounded Palais-Smale sequences.
We will present an existence result which is strongly based on a Hardy type inequality for functions of two variables.
This is joint work with Gabriele Cora (Università di Torino, Italy).

Дополнительные материалы: abstract_musina_stp.pdf (71.3 Kb)

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024