Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар отдела геометрии и топологии МИАН «Геометрия, топология и математическая физика» (семинар С. П. Новикова)
20 сентября 2023 г. 18:30, г. Москва, мехмат МГУ, ауд. 16-22
 


Quantisation ideals, deformations of non-commutative algebras and corresponding Poisson structures

А. В. Михайлов

University of Leeds
Видеозаписи:
MP4 1,208.5 Mb

Количество просмотров:
Эта страница:171
Видеофайлы:33



Аннотация: We propose to reformulate the problem of quantisation, focussing on quantisation of a dynamical system themselves, rather than of their Poisson structures [1,2,3]. We begin with a dynamical system defined on a free associative algebra $\mathfrak{A}={\mathbb C}[[\hbar]]\langle x_1,x_2,\ldots \rangle $ with non-commutative dynamical variables $x_1,x_2,\ldots $ and a commutative parameter $\hbar$. It can be obtained as a lift of a classical dynamical system to a free algebra preserving symmetries and/or other valuable properties of the dynamics. The non-commutative dynamical system defines a derivation $\partial \,:\, \mathfrak{A}\to\mathfrak{A}$ of the algebra. A two-sided ideal $\mathfrak{J}\subset\mathfrak{A}$ is said to be a quantisation ideal for $(\mathfrak{A},\partial)$ if it is $\partial$-stable: $\partial(\mathfrak{J})\subset\mathfrak{J};$ and the quotient ${\mathcal A}_{\hbar}=\mathfrak{A}\diagup\mathfrak{J}$ admits a basis ${\mathcal B}$ of normally ordered monomials. The quotient algebra ${\mathcal A}_\hbar$ is then said to be a quantised algebra with well defined quantum dynamics $\partial \,:\, {\mathcal A}_\hbar\to{\mathcal A}_\hbar$ [1].
The new approach enables us to define and present first examples of non-deformation quantisations of dynamical systems, i.e. quantum systems that can be presented in the Heisenberg form $\dot{a}=\frac{i}{\hbar}[H,a]$, while the algebra of observables ${\mathcal A}_\hbar$ remains non-commutative for any choice of “Planck's constant” $\hbar$ [1,3]. The quantised algebra ${\mathcal A}_\hbar$ can be viewed as a deformation of the non-commutative algebra ${\mathcal A}_0={\mathcal A}_\hbar\diagup (\hbar{\mathcal A}_\hbar)$. In the limit $\hbar\to 0$ it yields a Poisson algebra structure and Hamilton equations which are well defined on $Z({\mathcal A}_0)\times \frac{{\mathcal A}_0}{Z({\mathcal A}_0)}$ and ${\mathcal A}_0$ respectively, where $Z({\mathcal A}_0)$ is the centre of the algebra ${\mathcal A}_0$.
This talk is based on a joint work (yet in preparation) with Pol Vanhaecke.
[1] A.V.Mikhailov. Quantisation ideals of nonabelian integrable systems. Russ. Math. Surv., 75(5):199, 2020.
[2] V.M.Buchstaber and A.V.Mihkailov. {K}d{V} hierarchies and the quantum {N}ovikov equations. arXiv:2109.06357.
[3] S.Carpentier, A.V.Mikhailov and J.P.Wang. Quantisation of the Volterra hierarchy. Lett. Math. Phys., 112:94, 2022.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024