Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Конференция по комплексному анализу и его приложениям
12 сентября 2023 г. 10:00–11:00, Пленарные доклады, г. Красноярск, пр. Свободный, д. 79, к. 3-4
 


Арифметические свойства «обобщённых дробей Фарея»

М. А. Королёв

Математический институт им. В.А. Стеклова Российской академии наук, г. Москва
Видеозаписи:
MP4 799.4 Mb
MP4 1,551.9 Mb

Количество просмотров:
Эта страница:132
Видеофайлы:21



Аннотация: Классический ряд Фарея порядка $Q>=1$ — это множество упорядоченных по возрастанию дробей $a/b$ c условиями $0\leq a \leq b \leq Q$. Геометрическая интерпретация этого ряда получится, если рассмотреть на координатной плоскости $(x,y)$ половинку квадрата вида $0\leq y \leq x \leq Q$. Беря в нем примитивные точки (т.е. точки с целочисленными взаимно простыми координатами) и проводя к ним отрезки из точки $(0,0)$, убеждаемся, что угловые коэффициенты полученных отрезков и есть ряд Фарея порядка $Q$. Вместо половинки квадрата можно рассмотреть достаточно произвольную область $\omega$, лежащую в секторе $0\leq y\leq x$, (не обязательно выпуклую) и раздувать её с коэффициентом $Q$, $Q\to +\infty$. В ней также можно рассмотреть примитивные точки, провести к ним отрезки, и упорядочить тангенсы углов наклона по возрастанию. То, что получится, и есть обобщённый ряд Фарея, отвечающий области $\omega$. Если область достаточно «хорошая», полученный таким образом ряд Фарея будет обладать, в частности, «модулярным свойством», присущим классическому ряду Фарея: если $c/d < a/b$ — соседние дроби, то непременно $ab-cd = 1$. В докладе же предполагается рассказать о некоторых других свойствах, присущих как классическому, так и обобщённому рядам Фарея.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024