Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Конференция по комплексному анализу и его приложениям
11 сентября 2023 г. 15:45–16:30, Секция I, г. Красноярск, пр. Свободный, д. 79, к. 3-4
 


Факторы поверхностей дель Пеццо степени 8 без точек

А. С. Трепалин

Математический институт им. В.А. Стеклова Российской академии наук, г. Москва
Видеозаписи:
MP4 685.8 Mb
MP4 1,331.4 Mb

Количество просмотров:
Эта страница:108
Видеофайлы:36



Аннотация: Поверхности дель Пеццо степени 8 — довольно естественный объект, например, к ним относятся гладкие поверхности второго порядка в трёхмерном проективном пространстве. В случае, когда основное поле не алгебраически замкнуто, на такой поверхности может не оказаться точек, определённых над этим полем. Пусть G — конечная группа автоморфизмов такой поверхности. В докладе будет исследоваться бирациональная классификация таких факторов, в частности вопрос рациональности фактора (который по сути сводится к нахождению на факторе точки, определённой над основным полем). Будет показано, что в случае нечётного порядка группы фактор-поверхность бирационально эквивалентна исходной поверхности (в частности, на ней нет точек), а для групп чётного порядка фактор-поверхность бирационально эквивалентна некоторой квадрике в трёхмерном проективном пространстве, а также показано, что в большинстве случаев фактор будет рационален.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024