Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Конференция по комплексному анализу и его приложениям
15 сентября 2023 г. 15:00–16:00, Пленарные доклады, г. Красноярск, пр. Свободный, д. 79, к. 3-4
 


Меры Кларка на сфере: свойства и приложения

Е. С. Дубцовab

a Санкт-Петербургский государственный университет
b Санкт-Петербургское отделение Математического института им. В. А. Стеклова Российской академии наук
Видеозаписи:
MP4 1,622.8 Mb
MP4 835.9 Mb

Количество просмотров:
Эта страница:168
Видеофайлы:32



Аннотация: Пусть $B_n$ обозначает открытый единичный шар из $\mathbb{C}^n$, $n\ge 1$. Для каждой непостоянной голоморфной функции $\varphi: B_n \to B_1$ и числа $\alpha\in\partial B_1$ канонически определяется мера $\sigma_\alpha[\varphi]$, заданная на единичной сфере $\partial B_n$. В классическом случае $n=1$ данные объекты ввёл Д. Н. Кларк в [1]. За прошедшие 50 лет доказаны разнообразные утверждения о таких мерах на окружности. В докладе представлен ряд подобных результатов для $n\ge 2$. В частности, получена теорема о дезинтеграции, построены естественные унитарные операторы, ассоциированные с мерами Кларка. В качестве приложения получена теорема о сравнении исследуемых мер, доказано существование доминантных множеств для больших модельных пространств. Показано, что теорема Полторацкого о существовании граничных значений имеет место для функций из малого модельного пространства. Наконец, получена формула, связывающая существенную норму оператора композиции и сингулярные части ассоциированных мер Кларка. Отдельно обсуждаются различия между соответствующими теориями в шаре и в полидиске.
Доклад основан на совместных работах с А.Б. Александровым.
Исследования выполнены за счет гранта Российского научного фонда № 19-11-00058, https://rscf.ru/project/19-11-00058/

Список литературы
  1. Douglas N. Clark, “One dimensional perturbations of restricted shifts”, Journal d’Analyse Mathématique, 25 (1972), 169–191
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024