Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Большой семинар кафедры теории вероятностей МГУ
2 ноября 2011 г. 16:45, г. Москва, ГЗ МГУ, ауд. 16-24
 


Локальные предельные теоремы для случайных блужданий на полуоси

В. А. Ватутин

Математический институт им. В. А. Стеклова РАН

Количество просмотров:
Эта страница:383

Аннотация: Пусть $\{S_0=0,\ S_n,\ n\geq 1\}$ — случайное блуждание, порожденное последовательностью независимых одинаково распределенных случайных величин $X_1,X_2,\dots$, и пусть
$$ \tau^-=\min\{n\geq 1:S_{n}\leq 0\} $$
и
$$\tau ^{+}=\min \{n\geq1:S_{n}>0\}. $$
Предполагая. что распределение случайной величины $X_1$ принадлежит области притяжения устойчивого закона с параметром $\alpha$, мы исследуем асимптотическое поведение при $n\to\infty$ вероятностей $\mathbf{P}(\tau ^\pm=n)$ и доказываем локальные предельные теоремы типа Гнеденко и Стоуна для условных вероятностей
$$ \mathbf{P}(S_{n}\in\lbrack x,x+\Delta )|\tau ^->n) $$
при фиксированном $\Delta $ и $x=x(n)\in (0,\infty)$.
Будут также указаны применения этих теорем к некоторым задачам теории ветвящихся процессов в случайной среде.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024