Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Beijing–Moscow Mathematics Colloquium
2 июня 2023 г. 12:00–13:00, г. Москва, online
 


Local Conditions of Crystal Structures

N. P. Dolbilin

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Количество просмотров:
Эта страница:168

Аннотация: We will give an overview of the Local Theory of regular systems and also its connection with studies of quasicrystals and of arbitrary Delone/Delaunay set. The Local Theory of regular systems relates to the foundations of Geometric Crystallography.
The mathematical model of an ideal crystal (its atomic structure) is a discrete subset $X$ in a finite-dimensional Euclidean space that is invariant with respect to some crystallographic group $G$ of isometries of the Euclidean space. In other words, a crystal $X$ is the union of a finite number of $G$-orbits.
A single-point orbit is termed a regular system. Our attention will be focused on the lower and upper bounds for the regularity radius, which is the minimum size of clusters whose pairwise equivalence at all points of a Delone set provides the regularity of the set.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024