Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Конференция по теории функций многих действительных переменных, посвященная 90-летию со дня рождения чл.- корр. РАН О. В. Бесова
1 июня 2023 г. 16:00–16:50, г. Москва, МИАН, ул. Губкина, д. 8 + Zoom
 


Всплески типа сплайнов и операторы Римана–Лиувилля в пространствах Бесова

Е. П. Ушакова

Математический институт им. В.А. Стеклова Российской академии наук, г. Москва
Видеозаписи:
MP4 286.2 Mb
MP4 440.5 Mb

Количество просмотров:
Эта страница:152
Видеофайлы:78
Youtube Live:



Аннотация: Основной результат:
С помощью систем всплесков типа сплайнов и соответствующих им теорем декомпозиции найдены условия выполнения неравенств, связывающих нормы образов и прообразов операторов Римана–Лиувилля $I_\alpha$ натуральных и дробных порядков $\alpha > 0$ в весовых пространствах типа Бесова $B_{pq}{}^s$ на действительной оси и полуоси. Здесь $0 < p,q < \infty$ и $-\infty < s < \infty$ параметры суммирования и гладкости соответственно. С некоторыми ограничениями на веса возможно обобщение полученных результатов на многомерный случай.

Для решения задачи:
(1) построены специальные системы всплесков типа сплайнов натуральных порядков; (2) в терминах таких систем представлены декомпозиции элементов пространств $B_{pq}{}^s$ на $R^n$ с весами Мукенхоупта локального типа, установлен изометрический изоморфизм $B_{pq}{}^s$ с соответствующими секвенциальными пространствами.
В доказательствах также используются всплески типа сплайнов дробных порядков, разработанные Т. Блу и М. Ансером. Соответствующие им декомпозиции применяются в работе для извлечения односторонних оценок.
В качестве приложения основных результатов исследуется поведение последовательностей характеристических (аппроксимативных и энтропийных) чисел операторов Римана–Лиувилля . Из неравенств для $I_\alpha$ с $0 < \alpha < 1$ также выводятся условия ограниченности преобразования Гильберта на подклассах в $B_{pq}{}^s$.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024