Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




18 мая 2023 г., Algebraic Topology Seminar. Department of Mathematics, Princeton University  


The Milnor-Hirzebruch problem, complex cobordisms, and theta divisors

V. M. Buchstaber

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Дополнительные материалы:
Adobe PDF 691.8 Kb

Количество просмотров:
Эта страница:87
Материалы:19

Аннотация: Let $A^{n+1} = \mathbb{C}^{n+1}/\Gamma$ be a principally polarised abelian variety. The space of holomorphic sections of its canonical line bundle $L$ is one-dimensional and generated by the classical Riemann $\theta$-function. According to the Andreotti-Mayer theorem (1967), for a generic principally polarised abelian variety, the theta divisor $\Theta^n \subset A^{n+1}$ given by $\theta(z,\tau)=0$ is a smooth irreducible algebraic variety of general type. The talk is focused on the following result of Buchstaber-Veselov (2020), which is based on the construction of the Chern-Dold character in the theory of complex cobordism (Buchstaber, 1970). The exponential generating series of the complex cobordism classes of the theta divisors $[\Theta^n],\, n= 0,1,2,\ldots,$ realizes the exponential of the formal group law of geometric cobordisms}. We will discuss applications of this result to well-known problems in algebraic topology and algebraic geometry, including the hitherto open Milnor-Hirzebruch problem (1958) on Chern numbers of irreducible smooth algebraic varieties.

Дополнительные материалы: princeton_slides_may_2023.pdf (691.8 Kb)

Язык доклада: английский

Website: https://www.math.princeton.edu/events/milnor-hirzebruch-problem-complex-cobordisms-and-theta-divisors-2023-05-18t170000
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024