Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Актуальные проблемы прикладной математики
3 июля 2020 г., г. Новосибирск, Математический центр в Академгородке, Новосибирский государственный университет
 


”Игры среднего поля” как математические модели динамики социально-экономической активности

В. В. Шайдуров

Институт математики и фундаментальной информатики Сибирского федерального университета, г. Красноярск

Количество просмотров:
Эта страница:169
Youtube:



Аннотация: В докладе излагаются современные математические социально-экономические модели со структурой «Игры среднего поля», вышедшие из теоретической физики. В настоящее время они используются для прогнозного моделирования при заданных условиях управления или для его улучшения с целью достижения желаемого результата. Математическая модель представляет собой два параболических дифференциальных уравнения в частных производных (тип Фоккера-Планка-Колмогорова и Гамильтона-Якоби-Беллмана с соответствующим набором начальных и граничных условий) для оптимизации заданного целевого функционала. Для этой модели применяется дискретизация, результатом которой является система нелинейных алгебраических уравнений. Предложены специальные типы аппроксимации, наследующие основные свойства дифференциальной задачи (сопряженность и монотонность операторов, их ограниченность в соответствующих нормах) на дискретном уровне.
Этот математический аппарат используется для количественного моделирования распределения или использования альтернативных ресурсов, экологических проблем, оптимизации заработной платы и страхования, сетевых продаж и других социально-экономических мероприятий для прогнозирования совокупного поведения огромной массы агентов (населения), нацеленных на рациональную выгоду.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024