Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Beijing–Moscow Mathematics Colloquium
7 апреля 2023 г. 12:00–13:00, г. Москва, online
 


Reflection algebras and conservativity spectra of theories

L. D. Beklemishev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Количество просмотров:
Эта страница:143

Аннотация: Turing introduced progressions of theories obtained by iterating the process of extension of a theory by its consistency assertion. Generalized Turing progressions can be used to characterize the theorems of a given arithmetical theory of quantifier complexity level $\Pi^0_n$, for any specific $n$. Such characterizations reveal a lot of information about a theory, in particular, yield consistency proofs, bounds on provable transfinite induction and provably recursive functions.
The conservativity spectrum of an arithmetical theory is a sequence of ordinals characterizing its theorems of quantifier complexity levels $\Pi_1$, $\Pi_2$, etc. by iterated reflection principles. We describe the class of all such sequences and show that it bears a natural structure of an algebraic model of a strictly positive modal logic - reflection calculus with conservativity modalities.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024