Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Конференция "Молодежный забег МЦМУ МИАН"
14 марта 2023 г. 11:00–11:40, г. Москва, Математический институт им. В.А. Стеклова РАН, конференц-зал, 9 этаж
 


Towards homological projective duality for $\mathrm{Gr}(2, 2n)$

D. V. Pirozhkov
Видеозаписи:
MP4 762.1 Mb
MP4 1,910.6 Mb

Количество просмотров:
Эта страница:229
Видеофайлы:98



Аннотация: Given a variety $X$ over the projective space $\mathbb{P}(V)$ and a semiorthogonal decomposition of the derived category of $X$ which is Lefschetz, i.e., compatible in a certain way with the twist by $\mathcal{O}(1)$, homological projective duality is a way to construct a triangulated category, now over the dual projective space $\mathbb{P}(V^\vee)$, also with a Lefschetz decomposition, that is in many aspects similar to the derived category of $X$ and enjoys many useful properties. This “dual” category can be constructed in a formal way, but the relations with the derived category of $X$ become much more interesting if the dual category is also described geometrically, for example in terms of some variety over the dual projective space. I will talk about basic notions of homological projective duality and I'll give a conjectural description of the dual category to $\mathrm{Gr}(2, 2n)$ in its Plücker embedding, motivated by the description Kuznetsov gave in 2005 for the case $n=3$. This is a work in progress.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024