Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар по геометрической топологии
9 марта 2023 г. 17:30–19:30, г. Москва, Матфак ВШЭ (ул. Усачёва, 6), ауд. 210 + частично в Zoom
 


Embeddings of $k$-complexes in $2k$-manifolds and minimum rank of partial symmetric matrices

A. B. Skopenkov

Количество просмотров:
Эта страница:260
Youtube:




Аннотация: (joint work with E. Kogan) We present criteria for embeddability of $k$-dimensional simplicial complexes in $2k$-dimensional manifolds. The criteria are formulated in terms of minimizing the rank of a certain partial symmetric matrix (a version of the Netflix problem). The partial matrix is associated to the intersection form of the manifold, and to certain cohomological (van Kampen) obstruction. The proof is based on the known equivalence (for $k>2$) of embeddability and of $\mathbb Z$-embeddability. Our results generalize the Bikeev-Fulek-Kynčl-Schaefer-Stefankovič criteria for the $\mathbb Z_2$- and $\mathbb Z$-embeddability of graphs to surfaces, and are related to the Harris-Krushkal-Johnson-Paták-Tancer criteria for the embeddability of $k$-complexes in $2k$-manifolds.

Zoom (webcam quality): https://us02web.zoom.us/j/89530161902?pwd=d0tpNjN1b25zK1dyTzNFV2p6dXI0Zz09
Цикл докладов
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024