Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Beijing–Moscow Mathematics Colloquium
24 февраля 2023 г. 11:00–12:00, г. Москва, online
 


Congruence of modular forms and arithmetic of Shimura varieties

Yifeng Liu

Zhejiang University

Количество просмотров:
Эта страница:114

Аннотация: The congruence of modular forms is an important phenomenon in the arithmetic study of modular forms, or more generally, automorphic forms. For classical modular forms, many results have been obtained by Serre, Ribet, et al, for more than thirty years. In particular, Ribet used the arithmetic geometry of modular curves to find such congruence relation, also known as level raising. We recall as follows: Fix a prime $l$; consider a weight-$2$ level-$N$ newform $f$ satisfying the $\mathrm{mod}~l$ level-raising condition at a prime $p$ coprime to $Nl$. Ribet proved that the first Galois cohomology of the $\mathrm{mod}~l$ Galois representation of $\mathbb{Q}_p$ associated with $f$ can be realized as the Abel-Jacobi image of the supersingular locus of the level-$N$ modular curve over $F_p$.
In ongoing joint work with Yichao Tian (MCM) and Liang Xiao (PKU), we generalize this phenomenon to higher-dimensional unitary Shimura varieties at inert places (which remains a conjecture in general), and its relation with a certain Ihara type lemma for such varieties. In the talk, I will explain cases for which we have confirmed such conjecture; and if time permits, we will mention its number-theoretical implications.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024