Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Санкт-Петербургский семинар по теории операторов и теории функций
27 февраля 2023 г. 17:30–19:00, г. Санкт-Петербург, Фонтанка, 27, ауд. 311, также трансляция на платформе zoom, пароль можно узнать у Д. Столярова http://www.mathnet.ru/php/person.phtml?option_lang=rus&personid=61744
 


Непрерывные ветвящиеся марковские процессы на $\mathbb Z_+$: подход с использованием ортогональных многочленов

Люлинцев Андрей Валерьевич

Количество просмотров:
Эта страница:153

Аннотация: «Рассматривается однородный марковский процесс с непрерывным временем на фазовом пространстве $\mathbb{Z}_+ = \{0,1, 2, ...\}$, который мы интерпретируем как движение частицы. Процесс предполагается непрерывным в том смысле, что частица не может «перескакивать» через точки $\mathbb{Z}_+$, то есть при каждой смене положения частицы ее координата изменяется на единицу. Процесс снабжен механизмом ветвления. Источники ветвления могут находиться в каждой точке $\mathbb{Z}_+$. В момент ветвления новые частицы появляются в точке ветвления и дальше начинают эволюционировать независимо друг от друга (и от остальных частиц) по тем же законам, что и начальная частица. Такому ветвящемуся марковскому процессу соответствует матрица Якоби. В терминах ортогональных многочленов, отвечающих этой матрице, получены формулы для среднего числа частиц в произвольной фиксированной точке $\mathbb{Z}_+$ в момент времени $t > 0$. Результаты применены к некоторым конкретным моделям, получено точное значение для среднего числа частиц в терминах специальных функций и найдено его асимптотическое поведение при больших временах.»
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024