Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Общегородской семинар по математической физике им. В. И. Смирнова
13 февраля 2023 г. 16:30, г. Санкт-Петербург, онлайн-конференция zoom
 


The Brunn-Minkowski inequality for the principal eigenvalue of fully nonlinear homogeneous elliptic operators

G. Crasta

University of Rome "La Sapienza", Mathematics Department

Аннотация: We prove that the principal eigenvalue of any fully nonlinear homogeneous elliptic operator which fulfills a very simple convexity assumption satisfies a Brunn-Minkowski type inequality on the class of open bounded sets satisfying a uniform exterior sphere condition. In particular the result applies to the (possibly normalized) p-Laplacian, and to the minimal Pucci operator. The proof is inspired by the approach introduced by Colesanti for the principal frequency of the Laplacian within the class of convex domains, and relies on a generalization of the convex envelope method by Alvarez-Lasry-Lions. We also deal with the existence and log-concavity of positive viscosity eigenfunctions.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024