Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Международная конференция по математической физике, посвященная столетию со дня рождения В. С. Владимирова (Владимиров-100)
11 января 2023 г. 12:00–12:30, г. Москва, МИАН, комн. 430 (ул. Губкина, 8) + Zoom
 


Topological phases in the theory of solid states

A. G. Sergeev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Видеозаписи:
MP4 72.2 Mb
Дополнительные материалы:
Adobe PDF 241.9 Kb



Аннотация: This paper is devoted to the theory of topological phases — a new and actively developing direction in solid state physics. The topological phases are defined in the following way. Denote by $G$ the symmetry group and consider the set $\text{Ham}_G$ of classes of homotopy equivalent $G$-symmetric Hamiltonians. We assume that they have the energy gap stable under small deformations which makes it reasonable to use the topological methods for their study. It is possible to introduce on $\text{Ham}_G$ a natural stacking operation such that $\text{Ham}_G$, provided with this operation, becomes an Abelian monoid (i.e. an Abelian semigroup with the neutral element). The group of invertible elements of this monoid is precisely the topological phase. The initial ideas, lying in the base of the theory of topological phases, were formulated by Alexei Kitaev in his talks. It turns out that the family $(F_d)$ of $d$-dimensional topological phases forms an $\Omega$-spectrum. In other words, it has the property that the loop space $\Omega F_{d+1}$ is homotopy equivalent to the space $F_d$. This fact opens a way to wide use of algebraic topology methods for the study of topological phases. More concretely, one can associate with any $\Omega$-spectrum the generalized cohomology theory, determined by the functor $h^d$, which assigns to the topological space $X$ the set $[X,F_d]$ of classes of homotopy equivalent maps $X\to F_d$.

Дополнительные материалы: Sergeev.pdf (241.9 Kb)

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025