Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Когомологические аспекты геометрии дифференциальных уравнений
14 декабря 2022 г. 17:00, г. Москва, Независимый Московский университет, Большой Власьевский пер., 11, ауд. 303, ссылку для дистанционного участия можно узнать по адресу seminar@gdeq.org
 


One day workshop in honor of Maxim Pavlov's 60th birthday.
A relative of the NLS equation revisited


F. Mueller-Hoissen
Видеозаписи:
MP4 104.9 Mb
Дополнительные материалы:
Adobe PDF 290.7 Kb

Количество просмотров:
Эта страница:198
Видеофайлы:22
Материалы:25

F. Mueller-Hoissen



Аннотация: As other hierarchies, the AKNS hierarchy is known to possess a "negative" part (also see Kamchatnov and Pavlov, Phys. Lett. A 301 (2002) 269, arXiv:nlin/0208025). Via the NLS reduction, the first "negative" flow becomes a system for two functions. By elimination of one of them, the system implies a fairly simple PDE with a mixed third order derivative term. Whereas the reduction of this PDE to real dependent variable is completely integrable (i.e., a Lax pair exists), this is most likely not true for complex variable (S. Sakovich, arXiv:2205.09538). In between is the reduction given by the first negative flow of the NLS hierarchy. We present a vectorial binary Darboux transformation for the latter and exploit it to (re-) derive several types of (multi-) soliton solutions of the PDE, including rogue waves. It is derived from a general result of bidifferential calculus. Further properties of the PDE will be discussed. This work is mainly based on arXiv:2202.04512, to appear in Journal of Physics A: Mathematical and Theoretical.

Дополнительные материалы: mueller_hoissen_at_maxim_pavlov_workshop_december_2022.pdf (290.7 Kb)

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024