Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Группы Ли и теория инвариантов
7 декабря 2022 г. 17:00, г. Москва, Zoom
 


Вычисление группы компонент вещественной алгебраической группы

Д. А. Тимашёв

мехмат МГУ
Дополнительные материалы:
Adobe PDF 379.7 Kb

Количество просмотров:
Эта страница:164
Материалы:15
Youtube:



Аннотация: Пусть $G$ — связная алгебраическая группа, определённая над $\mathbb R$. Множество её комплексных точек $G(\mathbb C)$ есть связная комплексная группа Ли, а множество вещественных точек $G(\mathbb R)$ — вещественная группа Ли, но уже не обязательно связная: в качестве контрпримера достаточно взять $GL_n(\mathbb R)$. Оказывается, что группа компонент связности группы Ли $G(\mathbb R)$ всегда будет элементарной абелевой 2-группой. Этот результат был впервые получен Х. Мацумото в 1964 г. для полупростых алгебраических групп.
Обобщая и уточняя теорему Мацумото, мы явно вычислим группу компонент связности группы Ли $G(\mathbb R)$ для произвольной (не обязательно линейной) связной алгебраической группы $G$, основываясь на её разложении Розенлихта и длинной точной последовательности вещественных когомологий Галуа для короткой точной последовательности универсального накрытия группы Ли $G(\mathbb C)$. Ответ выглядит особенно наглядно в случаях, когда $G$ — линейная алгебраическая группа или абелево многообразие.
Случай линейных алгебраических групп опубликован в недавней работе доклачика «О группе компонент вещественной алгебраической группы», arXiv:2203.14024, см. также arXiv:2204.11482. Доклад можно рассматривать в некотором смысле как продолжение доклада от 10 ноября 2021 г.

Дополнительные материалы: slides_2022_12_07.pdf (379.7 Kb)
См. также
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024