Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Коллоквиум Факультета компьютерных наук НИУ ВШЭ
6 декабря 2022 г. 18:10–19:30, г. Москва, Покровский бульвар 11
 


Polynomial Chaos Expansion and Machine Learning: Benefits, Challenges, Applications

Alexander Tarakanov

HSE University, Moscow

Количество просмотров:
Эта страница:184
Youtube:

Alexander Tarakanov



Аннотация: Polynomial Chaos Expansion (PCE) is a Machine-Learning technique that approximates a given function as a series of orthogonal polynomials.
The main feature of PCE is a strong connection between family of orthogonal polynomials and statistics of input features. The benefits of such a connection are twofold. First of all, the quality of PCE response surface can be improved if orthogonal polynomials are selected in agreement with probability distribution of input data. Secondly, utilization of PCE-based response surfaces simplifies Sensitivity Analysis and Uncertainty Quantification, because a variety of sensitivity indices can be computed analytically without Monte-Carlo simulations.
In the present talk the fundamentals of PCE are covered. Advantages and challenges of data approximation with PCE are explained. Additionally, potential areas of applications such as optimization of data acquisition are covered.

Язык доклада: английский

Website: https://cs.hse.ru/announcements/799156223.html
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024