Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Научная сессия МИАН, посвященная подведению итогов 2022 года
23 ноября 2022 г. 13:20–13:35, г. Москва, ауд. 104 + online
 


Принцип максимума и асимптотические свойства полиномов Эрмита–Паде для некоторого класса аналитических функций

С. П. Суетин
Видеозаписи:
MP4 352.6 Mb
MP4 648.9 Mb

Количество просмотров:
Эта страница:206
Видеофайлы:27
Youtube:



Аннотация: Предложен новый подход к доказательству существования предельного распределения нулей полиномов Паде и Эрмита ‒ Паде для достаточно широкого класса алгебраических функций. В рамках этого подхода в указанном классе многозначных аналитических функций получено новое доказательство теоремы Шталя о сходимости по емкости соответствующих диагональных аппроксимаций Паде. Новое доказательство прямое, а не методом от противного, как это сделано в оригинальных работах Шталя. При этом не используется свойство ортогональности, справедливое для полиномов Паде. Доказательство основано только на принципе максимума.

Список литературы
  1. С. П. Суетин, “Прямое доказательство теоремы Шталя для некоторого класса алгебраических функций”, Матем. сб., 213:11 (2022), 102–117  mathnet  crossref [S. P. Suetin, “A direct proof of Stahl’s theorem for a generic class of algebraic functions”, Mat. Sb.]
  2. Sergey P. Suetin, Maximum Principle and Asymptotic Properties of Hermite–Padè Polynomials, 2021 , 13 pp., arXiv: 2109.10144


Статьи по теме:
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024