Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Современные проблемы теории чисел
17 ноября 2022 г. 12:45, г. Москва, МИАН, ауд.110.
 


О локальной теореме Кронекера (по совместной работе с И.С.Резвяковой).

М. А. Королёв

Математический институт им. В.А. Стеклова Российской академии наук, г. Москва
Видеозаписи:
MP4 422.4 Mb

Количество просмотров:
Эта страница:228
Видеофайлы:34



Аннотация: Предположим, что имеется набор из $N$ вещественных чисел, линейно независимых над полем рациональных чисел. Согласно теореме Коронекера, как бы ни было мало число $\epsilon,$ всегда можно подобрать число $t$ так, что все $t$-кратные этих чисел будут отличаться от целых чисел не более чем на $\epsilon.$ Локальная теорема Кронекера — вариант этого утверждения, в котором для этого числа $t$ указываются какие-либо границы: $T <t <T+H.$ Такого рода теоремы востребованы в теории дзета-функции для доказательства «эффективных» омега-теорем, когда нужно не просто доказать существование «аномальных» значений дзета-функции, но и указать интервал, в котором они гарантированно встретятся. В докладе будет рассказано о локальной теореме Кронекера, хотя и не самой точной на сегодняшней день, но доказательство которой опирается на элементарные соображения, восходящие к работам Г.Бора и Э.Ч.Титчмарша.
Идентификатор конференции: 942 0186 5629 Код доступа-шестизначное число, первые три цифры которого образуют число p+44, а последние три цифры-число q+63, где p,q-наибольшая пара близнецов, меньших 1000
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024