Аннотация:
Обсуждаются новые конструктивные формулы для канонического
оператора Маслова, полученные в работах С.Ю.Доброхотова, В.Е.Назайкинского и А.И.Шафаревича, основанные на интегральных
представлениях в окрестности каустик (лагранжевых сингулярностей) в виде интегралов по координатам на соответствующих лагранжевых
многообразиях. Такие представления позволяют во-первых существенно упростить асимптотики решений многих задач для линейных дифференциальных и псевдодифференциальных уравнений и во-вторых расширить класс задач, в которых можно применить канонический оператор. Также обсуждается подход, позволяющий для ряда задач выразить глобально асимптотику решения в виде
канонического оператора Маслова через специальные функции сложного аргумента, например функции Эйри, Бесселя и др. В качестве примеров рассматриваются задача о Кеплеровых траекториях в рассеянии и в асимптотике типа функции Грина на
отталкивающем кулоновском потенциале, задачи Коши с локализованными начальными данными и др.
Доклад основан на совместных работах с В.Е.Назайкинским, А.И.Шафаревичем, А.Ю.Аникиным, С.Б.Левиным, А.А.Толченнниковым, А.В.Цветковой, А.И.Клевиным.
Идентификатор конференции: 844 3430 3199 Код доступа: 991937