Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Вторая конференция Математических центров России. Секция «Уравнения с частными производными»
10 ноября 2022 г. 17:50–18:30, г. Москва, Ломоносовский корпус МГУ, аудитория Д5, Ломоносовский пр., 27, к. 1
 


О локально ограниченных решениях одномерных законов сохранения с несимметричной функцией потока

Л. В. Гаргянц
Дополнительные материалы:
Adobe PDF 1.4 Mb

Количество просмотров:
Эта страница:99
Материалы:2

Аннотация: В полосе $\Pi_T=\{(t,\,x)\mid t \in (0,\,T),\ x \in \mathbb{R}\}$, где $0<T\le+\infty$, рассматривается задача Коши
\begin{equation}\label{Cau} u_t+(f(u))_x=0, \ (t,\,x)\in\Pi_T, \qquad u|_{t=0}=u_0(x),\ x\in\mathbb{R}. \end{equation}
Функция потока $f(u)$ предполагается строго выпуклой вверх на отрицательной полуоси и выпуклой вниз — на положительной.
Строятся локально ограниченные решения задачи \eqref{Cau} со счетным числом линий сильного разрыва. Полуплоскость $t>0$ делится гладкими непересекающимися кривыми $\Gamma_{n}=\left\{x=\gamma_{n}(t),t>0\right\} $ на счетное число областей. Функциональная последовательность $\gamma_{n}(t)$ является неограниченно монотонно убывающей, а также $\lim_{t\to +0}\gamma_{n}(t)=-\infty .$ В областях $D_{n}=\left\{ \gamma_{n-1}(t)>x>\gamma_{n}(t)\right\} $ между этими кривыми решение является классическим, а каждая из кривых $\Gamma_{n}$ является линией сильного разрыва, причем со стороны $x>\gamma_{n}(t)$ кривая $\Gamma_{n}$ является огибающей семейства характеристик из области $D_{n}$ при $n\in\mathbb{N}$. Для $n=0$ лишь часть ударной волны $\Gamma_0$ образуется как огибающая семейства характеристик, идущих от начальных условий.

Дополнительные материалы: ГаргянцЛВ.pdf (1.4 Mb)
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024