Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Конференция посвященная 65-летию Ф. А. Богомолова
4 сентября 2011 г. 14:30, г. Москва
 


Rings and varieties

Miles Reid

University of Warwick
Видеозаписи:
Flash Video 408.3 Mb
Flash Video 2,483.2 Mb
MP4 1,550.4 Mb

Количество просмотров:
Эта страница:884
Видеофайлы:216

Miles Reid



Аннотация: I leave the title and abstract as vague as possible, so that I can talk about whatever I feel like on the day. Many varieties of interest in the classification of varieties are obtained as Spec or Proj of a Gorenstein ring. In codimension $\le 3$, the well known structure theory provides explicit methods of calculating with Gorenstein rings. In contrast, there is no useable structure theory for rings of codimension $\ge 4$. Nevertheless, in many cases, Gorenstein projection (and its inverse, Kustin-Miller unprojection) provide methods of attacking these rings. These methods apply to sporadic classes of canonical rings of regular algebraic surfaces, and to more systematic constructions of $Q$-Fano 3-folds, Sarkisov links between these, and the 3-folds flips of Type A of Mori theory.
For introductory tutorial material, see my website + surfaces + Graded rings and the associated homework.
For applications of Gorenstein unprojection, see “Graded rings and birational geometry” on my website + 3-folds, or the more recent paper.
Gavin Brown, Michael Kerber and Miles Reid, Fano 3-folds in codimension 4, Tom and Jerry (unprojection constructions of $Q$-Fano 3-folds), Composition to appear, arXiv:1009.4313.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024