Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Вторая конференция Математических центров России. Секция «Геометрия и топология»
10 ноября 2022 г. 15:45–16:05, г. Москва, Ломоносовский корпус МГУ, аудитория В2, Ломоносовский пр., 27, к. 1
 


Бесконечная серия компактных гиперболических 3-многообразий с вполне геодезическим краем и каспами и их минимальные триангуляции

Д. Д. Нигомедьянов
Дополнительные материалы:
Adobe PDF 529.6 Kb

Количество просмотров:
Эта страница:94
Материалы:1

Аннотация: Триангуляционная сложность $c_{\Delta}(M)$ компактного связного 3-многообразия $M$ с непустым краем равна наименьшему числу тетраэдров среди всех идеальных триангуляций $M$. Докладчиком совместно с Е. А. Фоминых была получена новая нижняя оценка на триангуляционную сложность: $c_{\Delta}(M) \geqslant \beta_1(M,\mathbb{Z}_2)$. Доклад будет посвящён классу многообразий, на которых достигается нижняя оценка сложности. Конкретнее, мы обсудим вопрос наличия многообразий из данного класса с заданными характеристиками, такими как край и группы гомологий.
Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации, соглашение № 075–15–2022–287.

Дополнительные материалы: НигомедьяновДаниил.pdf (529.6 Kb)
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024