Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Вторая конференция Математических центров России. Секция «Алгебраическая геометрия»
7 ноября 2022 г. 18:30–18:55, г. Москва, МИАН, конференц-зал на 9 этаже, ул. Губкина, 8
 


Комбинаторика коприсоединённых орбит нильпотентых алгебр Ли

А. В. Петухов
Видеозаписи:
MP4 947.4 Mb
MP4 511.4 Mb
Дополнительные материалы:
Adobe PDF 135.0 Kb

Количество просмотров:
Эта страница:126
Видеофайлы:22
Материалы:4



Аннотация: Пусть $G$ — это комплексная простая группа Ли, $N$ — её максимальная унипотентная подгруппа, $\frak n$ — алгебра Ли $N$. Орбиты коприсоединённого действия $N: \frak n^*$ активно изучаются вот уже более 50 лет в контексте метода орбит Кириллова, и их полное описание для всех типов сразу является дикой задачей (насколько мне известно, даже для довольно маленьких алгебр Ли, скажем, для $F_4$ ответ пока не найден). С другой стороны, для простых групп классических серий $A, B, C, D$ имеется стратификация орбит Андре, разбивающая все орбиты на большие и довольно явно описанные классы; каждая страта (класс) в этой конструкции описывается расстановкой ладей.
В моём докладе я хотел показать как дополнить комбинаторику стратификации Андре до полной классификации коприсоединённых орбит $N: \mathfrak n^*$ в типах $B_4, C_4, D_4$, а так же как из схожих конструкций можно получить описание орбит максимальной и предмаксимальной размерности во всех классических типах (раннее этот результат был получен А. А. Кирилловым и А. Н. Пановым для типа $A$). Доклад основан на совместной работе с М. В. Игнатьевым, которую мы сейчас пишем.

Дополнительные материалы: ПетуховАВ.pdf (135.0 Kb)
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024