Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Вторая конференция Математических центров России. Секция «Алгебраическая геометрия»
7 ноября 2022 г. 18:00–18:25, г. Москва, МИАН, конференц-зал на 9 этаже, ул. Губкина, 8
 


Касательные конусы к аффинным многообразиям Шуберта

А. А. Шевченко
Видеозаписи:
MP4 744.3 Mb
MP4 401.9 Mb

Количество просмотров:
Эта страница:128
Видеофайлы:18



Аннотация: \noindent Пусть $G$ — комплексная редуктивная алгебраическая группа, $B$ — её борелевская подгруппа, $G/B$ — многообразие флагов. Будем рассматривать касательные конусы к многообразиям Шуберта в точке $p=eB$. В 2011 году А. Н. Панов выдвинул гипотезу, что для инволюций в группе Вейля касательные конусы различны как подсхемы в касательном пространстве к $G/B$ в точке $p$. Легко показать, что гипотезу достаточно проверить для групп Вейля, соответствующих неприводимым системам корней. На данный момент она доказана для типов $A_n$, $B_n$, $C_n$, $F_4$, $G_2$, а так же для части инволюций в оставшихся типах. В докладе будет обсуждаться расширение этой гипотезы на аффинные группы Каца-Муди. А точнее, следующая ситуация. Пусть $W$ — группа Вейля типа $\widetilde{A_n}$, $\widetilde{G}$ — соответствующая ей группа Каца-Муди, $\widetilde{B}$ — её борелевская подгруппа, $\widetilde{G}/\widetilde{B}$ — многообразие флагов. Аналогично редуктивному случаю определяются аффинные многообразия Шуберта и можно сформулировать такую же гипотезу.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024