Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Международная конференция "Новые направления в математической физике"
11 ноября 2022 г. 14:30–15:00
 


Delicate windows into evaporating black holes

M. A. Khramtsovab

a Vrije Universiteit, Brussels
b International Solvay Institute
Видеозаписи:
MP4 156.9 Mb
Дополнительные материалы:
Adobe PDF 1.0 Mb

Количество просмотров:
Эта страница:118
Видеофайлы:21
Материалы:19



Аннотация: In this work we revisit the model of AdS$_2$ black hole in JT gravity evaporating into an external bath. We study when and how much information about the black hole interior can be accessed in these models through different portions of the Hawking radiation collected in the bath, and we obtain the corresponding full quantitative Page curves. As a refinement of previous results, we describe the island phase transition for a semi-infinite segment of radiation in the bath, establishing the interior access for times within the regime of applicability of the model. For finite sizes segments in the bath, one needs to include the purifier of the black hole microscopic dual together with the radiation segment in order to access the interior information. We identify four scenarios of the entropy evolution in this case, including a possibility where interior reconstruction window keeps appearing and disappearing as time evolves. Analyzing the phase structure of the entropy evolution depending on the parameters of the model, we demonstrate that unlike the semi-infinite segment Page curve which accounts for almost all of the radiation, the finite segment Page curve is very fragile to changes of the parameters. We also discuss the evolution of the subregion complexity of the radiation during the black hole evaporation.

Дополнительные материалы: Khramtsov.pdf (1.0 Mb)

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024