Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Международная конференция "Новые направления в математической физике"
9 ноября 2022 г. 10:30–11:00
 


Ramified chaotic attractors of smooth geometrically integrable self-maps of a cylinder

L. S. Efremova

National Research Lobachevsky State University of Nizhny Novgorod
Видеозаписи:
MP4 90.9 Mb
Дополнительные материалы:
Adobe PDF 309.6 Kb

Количество просмотров:
Эта страница:162
Видеофайлы:14
Материалы:16



Аннотация: We give the definition of a geometrically integrable self-map of a cylinder and formulate criteria for the geometric integrability. Then we prove the geometric integrability of C^1 - smooth self-maps of a cylinder, close to C^1 - smooth skew products and satisfying some additional conditions. Finishing these considerations, we give the example of the family of geometrically integrable cylinder maps so that each map from this family admits the global chaotic attractor, which is a one-dimensional ramified continuum with a complicated topological structure. The global attractor of every map from the family under consideration consists of arcs of two types. On the unique arc of the first type the map is mixing; on arcs of the second type (the family of such arcs is countable) the map is not mixing (for details see [1]). REFERENCES [1] L.S. Efremova, Ramified continua as chaotic attractors of C 1 -smooth self-maps of a cylinder close to skew products, J. Difference Equ. Appl., Special issue "Lozi, He´non and other chaotic attractors. Theory and applications", 28 (2022) (to appear).

Дополнительные материалы: Efremova.pdf (309.6 Kb)

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024